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Abstract

Spatial analysis is currently a popular research tool, particularly in studies that focus on soil properties, 
and it is important for a comprehensive presentation of results by means of spatial statistics techniques. 
Spatial autocorrelation determines a degree of relationship between variables for two specific spatial units 
(locations). This relationship is reflected by spatial dependence of investigated soil properties. Moran’s I 
was used as a measure of spatial autocorrelation. Positive spatial autocorrelation was determined for soil 
salinity (electrical conductivity) and temperature. Thus, the aim of the study was to identify the factors af-
fecting spatial correlation of electrical conductivity (EC) and temperature in farmland and forest-covered 
areas. A model of artificial neural network was based on salinity, as salinity reduces the amount of nutrients 
and soil temperature, thus inhibiting plant root growth. Our study revealed that the most effective parameters 
determining soil temperature were EC and moisture content. The best results in the EC model were achieved 
for soil moisture content, temperature, and soil texture. Both soil parameters were impacted by catchment 
land use. Spatial analysis of soil properties and identification of factors affecting their diversity may be 
helpful in determining proper land use – particularly of sustainable agricultural practices in mountain areas.
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Introduction

The values of basic soil parameters at regional, local, 
or large-area scales may be used to draw conclusions on 
their spatial variability. However, these relationships are 
usually neglected, and soil is treated as a homogeneous 
environment. As a consequence, all measurements of its 
physical or chemical parameters are usually performed for 
a single point that is then treated as a reference point for 
all agrotechnical procedures implemented in a specific 
area [1-5]. Soil properties may be characterized as either 
stable (showing low variability over time) or dynamic, 
depending on external factors such as soil cultivation or 
weather conditions. The stable properties, represented 
by soil texture and bulk density, are affected by tillage. 
The dynamic properties include soil temperature, 
EC, and moisture content [6-12]. Soil temperature 
is rarely analyzed in agricultural areas of a mountain 
catchment. Nevertheless, apart from moisture content and 
precipitation, it is one of the most important parameters in 
long-term studies on soil fertility [13]. Soil temperature 
significantly affects soil-forming processes. It controls 
metabolic processes and affects weathering of minerals or 
organic matter degradation [14]. 

Mapping of EC is useful in studying the relationship 
between landform and soil [15-16]. Similar to temperature, 
EC monitoring is also neglected. Soil salinity is usually 
a local problem caused mostly by anthropogenic and, to 
a lesser extent, by natural factors. Salinity is a result of 
disturbed chemical equilibrium of the soil due to a periodic 
or constant supply of considerable amounts of cations 
and anions. It is usually manifested by an accumulation 
of easily soluble salts – generally sulphides and chlorides. 

Salinity reduces crop yield by inhibiting soil fertility 
and plant growth. Its negative impact on plants consists 
in limiting the availability of water content in soil [17-
18]. Moisture content is the most often investigated 
parameter in soil assessment. It is particularly important 
for crop productivity, as it determines the physiological 
status of plants and soil microorganisms. However, 
estimating moisture content is complicated due to a 
multiplicity of factors that need to be considered, such as 
its range, percolation, precipitation, or topography [19-20]. 
Management in agro-ecosystems is required to promote 
soil carbon (C) sequestration (storage) in agricultural soil, 
thus assessment of soil quality parameters is essential 
under different land use forms [21].

Spatial variability of soil parameters, such as bulk 
density, temperature, salinity, or moisture content 
significantly affects soil productivity in agricultural and 
forest areas. Therefore, the aim of this study was to predict 
by spatial autoregressive model the factors affecting the 
spatial distribution of soil salinity and temperature using 
an artificial neural network (ANN). 

Materials and Methods 

Study Area and Soil Sampling

The catchment of Mątny stream (Fig. 1) is located in 
the External Western Carpathians. The area (1.5 km2) is 
dominated by meadow, farmland, and forest [22-23]. Soil 
moisture content, soil temperature, and salinity (electrical 
conductivity, EC) were measure in 160 study plots by 
means of a TDR device, which allows for noninvasive, 
precise, and fully automatic measurements of water 
content in the soil. The method evaluates volumetric 
soil moisture based on its relative permittivity without 
disturbing the soil structure. The results of soil moisture 
were recorded as a percentage of water in the soil (percent 
volume). Basic soil properties were described in our 
previous paper [24].

The soil samples were collected from a top layer of the 
soil (0 to 25 cm) in 80 selected study plots. Metal cylinders 
(100 ml) had been cleaned and weighed before sampling. 
The soil from the cylinders was dried at 105ºC, and the 
soil from plastic bags was sieved through a 2 mm mesh 
sieve at room temperature. Soil texture was determined 
using the method developed by Casagrande in Prószyński’s 
modification. Bulk density (undisturbed natural structure) 
was determined in volumetric samples of soil maximally 
saturated with water.

Statistical Analysis

The investigated soil parameters were characterized by 
the following descriptive statistics: measures of location – 
minimum, median (M), and maximum values; measures 
of dispersion – standard deviation (s) and coefficient of 
variation (Vs); and measures of shape – skewness (Ske) and 
kurtosis (Kurt). 

Fig. 1. The catchment of Mątny River: a) relief, b) general 
overview, c) digital elevation model.
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Histograms and empirical cumulative distributions 
were determined for each of the analyzed soil parameters. 
The number of intervals (Lk) and their width (Δ) were 
computed according to the formulas published by Mucha 
[25]:

Lk ≈ 5 · logN                   (1)

…where N is the number of data in the observation 
sequence.

Δ =                      (2)

…where Smax is the maximum value of the investigated 
soil parameter and Smax is the minimum value of the 
investigated soil parameter.

Furthermore, the study assessed the effect of land use on 
changes in the investigated soil properties. The assessment 
was performed using a non-parametric Kruskal-Wallis 
test. The inference involved assigning ranks to the 
ordered elements of all samples and determining the rank 
sum for each sample. When the differences between the 
analyzed sums were insignificant, the null hypothesis 
(H0), assuming no significant effect of the analyzed factor 
on the examined variables was true [26]. In this study, 
assumption was carried out for p<0.05.

Forecasting Model

The neural network model in the form of a multilayer 
perceptron (MLP) was used to generate EC and 
temperature forecasts in Statistica software (v. 12.5). The 
network system included input and hidden layers made 
of five neurons and an output layer with three neurons. 
Usually all the neurons of the preceding layer were 
connected to all the neurons of the next layer. Contrary 
to mathematical and algorithmic methods, the network 
may be used in many different models without significant 
modifications. These features may be achieved only by 
implementation of a proper learning algorithm. Training 
involves presenting the network with input values together 
with their respective desired output values. Then the 
network sets the values of weights so that the answer fits 
within the margin of error assumed for data modeling. The 
network taught with a specific data vector will provide 
results also for data not provided during the learning 
process.

Spatial Analysis

Explicative variables (observations) induce a 
correlation between the error and the lagged variable. Thus, 
to determine the spatial analysis, spatial autoregressive 
(SAR) model with lagged dependent variable [27] was 
used:

Y = ρWy + Xβ + ε                   (3)

…where Y is the dependent variable for the spatial model, y 

is the value of lagged dependent variable (delayed) in time 
(explicative variables at site between measurements), ρ is 
spatial effect coefficient (autocorrelation parameter), Wy 
is the matrix of spatial weights for the observed variable 
y (the elements of a row-standardized weight matrix), 
Xβ is the matrix of observations for vector of regression 
coefficient, and ε is the value of the random component 
(observation error).

Spatial autoregression and autocorrelation were 
computed with Spatial Analysis in Macroecology (SAM) 
software (v. 4.0) [28].

Results and Discussion

Basic Soil Properties

The computed values of descriptive statistics for the 
investigated soil properties were used to describe the 
dynamics of their changes. The data presented in Table 
1 indicate that the greatest bulk density was determined 
for the forest soils. Vs values determined for the analyzed 
areas revealed very low variability. The parameters of its 
statistical distribution suggested right-side asymmetry 
of bulk density in forest and agricultural areas and left-
skewed asymmetry of bulk density in meadow areas. 
Contrary to that, the values of kurtosis suggested 
leptokurtic distribution of this feature in all analyzed 

Land use Min. Mean Max. s Vs Sko Kurt

Bulk density (g cm-3)

Meadow 1.32 1.41 1.48 0.04 0.03 -0.58 0.17

Forest 0.32 1.23 1.34 0.07 0.05 1.81 3.25

Arable 
area 1.28 1.32 1.38 0.03 0.02 0.54 0.51

Soil temperature (ºC)

Meadow 11.8 13.3 15.2 0.78 0.06 0.48 -0.55

Forest 12.6 13.1 14.2 0.65 0.05 1.93 3.77

Arable 
area 12.5 14.1 15.0 0.81 0.06 -1.16 0.55

EC (dS m-1)

Meadow 0.30 0.49 0.82 0.10 0.20 1.03 1.46

Forest 0.32 0.70 1.11 0.29 0.41 0.34 0.58

Arable 
area 0.41 0.65 0.98 0.20 0.31 0.29 -1.56

Soil moisture (%)

Meadow 40.60 58.76 79.10 8.56 0.15 0.43 0.09

Forest 14.50 36.10 51.00 14.55 0.40 -0.75 -1.56

Arable 
area 17.10 43.84 63.20 14.44 0.33 -0.68 0.22

Table 1. Values of descriptive statistics for the investigated soil 
properties.
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areas. Similar values of statistical parameters calculated 
in relation to bulk density were reported by Mzuku  
et al. [29] for selected soil properties within a 17 ha area 
in Mississippi, USA. Mean bulk density for the soils in 
this area was 1.33 g cm-3. Similar value was recorded for 
Mątny stream catchment (1.32 g cm-3). Parallel outcomes 
were also presented by Kilic et al. [30]. Soil temperature 
analysis demonstrated its highest value for arable lands. 
Moreover, the investigated areas were characterized by 
very low variability of soil temperature. Skewness values 
indicated right-side asymmetry of this parameter for 

meadows and forests and left-side skewness for arable 
lands. Kurtosis values indicated leptokurtic distribution of 
this parameter in forests and arable lands and platykurtic 
distribution in meadow soils. The highest mean soil 
salinity was determined in forests, and these areas were 
also characterized by the greatest variability of this 
parameter. EC values demonstrated right-side asymmetry 
in all the investigated types of land. The values of kurtosis 
suggested leptokurtic distribution of salinity in meadow 
and forest soils as well as platykurtic distribution in arable 
lands. 

Fig. 2. Histogram of relative frequency and empirical cumulative distribution function for soil bulk density of the Mątny River catchment.

Fig. 3. Histogram of relative frequency and empirical cumulative distribution function for soil temperature of the Mątny River catchment.
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Moderate levels of EC variability were also reported by 
Naynaka et al. [31], similarly to our findings for the Mątny 
stream catchment. Soil moisture content was the highest 
in meadow soils. Moreover, Vs values varied depending on 
the type of land use. Skewness values suggested left-side 
distribution of this parameter for forests and arable lands 
and right-side distribution for meadow areas. Platykurtic 
distribution was indicated only for forests. Similar results 
for soil moisture content variability were reported for 
arable lands [32]. Vs values reflecting moisture content 
variability were assessed at 31%, whereas the coefficient 

of variation for arable lands in the Mątny stream catchment 
was about 33%.

Histogram of Relative Frequency and Empirical 
Cumulative Distribution Function

The next step of the analysis was the preparation of 
frequency histograms and empirical distribution functions 
for the investigated soil properties in the Mątny stream 
catchment. The number of class intervals and their range 
were determined from equations 2 and 3. Frequency of 

Fig. 4. Histogram of relative frequency and empirical cumulative distribution function for EC of the Mątny River catchment.

Fig. 5. Histogram of relative frequency and empirical cumulative distribution function for soil moisture of the Mątny River catchment.
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specific values of the investigated soil parameters together 
with their empirical distribution functions are presented 
in Figs 2-5.

Frequency histograms and empirical distribution 
functions are commonly used for describing the frequency 
of selected soil properties [33-34]. Data presented in 
Fig. 2 showed that the prevailing values of bulk density 
ranged from 1.39 to 1.43 g cm-3. Values belonging to this 
interval were recorded in 33 measurements, i.e., nearly 
45% of all observations. Soil temperature (Fig. 3) values 
fell into the class interval of 12.3 to 12.7ºC, which 
harbored 18 measurements (23% of all observations).  
Fig. 4 shows that salinity ranged from 0.4 to 0.5 dS m-1. 
This indicated sufficient agricultural usefulness of the 
study area. Values belonging to this interval were recorded 
in 35 measurements, or nearly 45% of all observations. 
The data in Fig.5 indicated that soil moisture content in the 
investigated catchment fell within a 56% to 63% interval 
for 32% of all measurements. The highest dispersion of 
the soil properties was noticed for soil moisture content. 
This was evidenced by the coefficient of variation 
that indicated distinct differences in variability for this 
parameter.

Impact of Land Use on Soil Properties

The outcomes of the Kruskal-Wallis test showed that 
the type of land use significantly affected soil properties, 
such as bulk density, soil temperature, and moisture 
content (Table 2). This was evidenced by the values of 
test probability p that for these parameters was lower 
than the assumed level of significance α = 0.05. Therefore, 
there was no reason to accept hypothesis H0 that assumed 
no significant differences in specific values of the 
investigated variables. Contrary to the above, land use did 
not affect salinity values. This may be explained by the 
fact that salinity caused by natural factors is strictly local 
and that its main sources are anthropogenic, i.e., mineral 

fertilizers. Similar results were published by other authors 
[35-36], who also demonstrated a significant effect of land 
use on selected physical and chemical properties of soils 
in the investigated areas. Moreover, soil properties are 
commonly used in the analysis of the impact of selected 
factors on soil quality [37-45].

 
Artificial Neural Networks 

Verifying ANN performance has gained widespread 
application in environmental engineering [46]. The best-
performing network was the three-layer MLP (a multilayer 
perceptron) for soil temperature with a logistical function 
of hidden neuron activation and hyperbolic tangent for 
the output neurons. MLP was also selected as an artificial 
neural network for EC, and it featured the exponential 
activation function of the hidden neurons and linear 
activation function of the output neurons (Table 3). 
In modeling engineering problems for environmental 
purposes the optimization of activation function should 
be applied to improve ANN with satisfactory results [47]. 
The value of EC was mainly affected by soil moisture 
content, soil texture, soil temperature, and bulk density 
(MPE, mean percentage error was 2.35%). Temperature 
was mainly dependent on EC, soil moisture content, and 
bulk density (MPE = 7.97). A prognosis for the type of 
land use for both parameters was heavily error-burdened. 
The error threshold was assumed as 10% relative error 
commonly used in simulation research [48]. 

Analysis of Spatial Model

Classic spatial autocorrelations are statistical 
comparisons of spatial weights with covariance 
relationships for two locations. Spatial autocorrelation 
determines a degree of relationship between spatial 
units [49]. Positive spatial autocorrelation was found 
for EC, suggesting that EC accumulation depended on 
the environment in which it occurred (Fig. 6a). Positive 
autocorrelation means spatial accumulation of high or low 
values of the observed variables. Positive autocorrelation 
was also determined for soil temperature (Fig. 6b). When 
the spatial autocorrelation is more positive than expected 
based on random data, it indicates a grouping of similar 
values in the entire geographic space. Such a high 
correlation signals high spatial ordering of the investigated 
variable. The presence of positive spatial autocorrelation 
leads to an underestimation of the appropriate sample size 
[50]. Our study area featured well-defined clusters of zones 
with high or low temperatures. This was probably due to 

Soil indicator χ2 P

Bulk density 23.86 < 0.0001

Soil temperature 6.56 0.04

EC 3.93 0.14

Soil moisture 11.68 0.003

Table 2. Values of χ2 and test probability P determining the 
effects of land use on the investigated soil properties.

Variables 
Quality  Activation function of a node 

Learning Verification Validation Input Output

Soil temperature 0.75 0.35 0.73 Logistic Hyperbolic tangent

EC 0.80 0.59 0.87 Exponential Linear

Table 3. Artificial neural network (topography according to MLP 5-5-1).
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Fig. 7. PCA showed the most important factors in catchment 
designed for a) agriculture-use and b) forest zone.

Fig. 6. Correlogram present spatial positive autocorrelation for a) 
EC and b) soil temperature.

Variable Coefficient value Standard Coefficient Standard Error t P

EC

Constant 9.28 - 5.30 1.75 0.08

Bulk density -6.20 -0.27 2.91 -2.12 0.037

Soil moisture 0.009 0.078 0.01 0.63 0.52

Soil temperature

Constant 1.19 - 1.79 0.66 0.91

EC 0.04 0.012 0.42 0.10 0.51

Bulk density 0.12 0.012 1.27 0.09 0.92

Soil moisture -0.02 -0.45 0.006 -4.006 <0.01

Table 4. Results of Simultaneous Autoregression for EC and soil temperature computed with predictor variables. Significant value are 
bolded.
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differences in location of these zones and their different 
exposures. Higher temperatures were recorded on the 
slopes with southern exposure (S). This relationship causes 
spatial grouping of similar values into clusters and allows 
for identification of spatial agglomeration effects, i.e., its 
significant values indicate whether there are clusters of 
similar – high or low – values around a spatial unit. The larger 
scale indicated high autocorrelation and agglomeration in 
multi-scale spatial autocorrelation analysis of cultivated 
land quality [51]. Fig. 6 shows the results for Moran’s 
correlation coefficients for EC and soil temperature.

The spatial autoregressive model for EC demonstrated 
the greatest role of bulk density (p < 0.05; r = 0.24). Spatial 
effect coefficient (rho) was 0.96 (standard error = 3.81). 
Estimation according to Akaike’s Information Criterion 
for small samples (AICc) yielded the value of 8.62. Spatial 
autoregression for temperature indicated soil moisture 
content as the best predictor for spatial modeling (p<0.01; 
r = 0.45). The spatial effect coefficient was 0.97 (standard 
error = 0.16; AICc = 110.34). Detailed results for the model 
of the investigated variables in the spatial arrangement are 
presented in Table 4.

In an agricultural area, estimation of soil parameters 
might be indicated based on multivariate analysis. In 
our research for both types of land use, soil temperature 
negatively correlated with the factors determined by 
principal axes. In arable lands, clay showed a positive 
correlation for the major component of both the first 
and second primary axis (Barlett test p < 0.01; KMO 
coefficient = 0.42). In forest zones, the most prominent 
factor was bulk density (Barlett test p < 0.01; KMO 
coefficient = 0.45), which positively correlated with both 
principal components presented by ordination technique 
(Fig. 7). 

Conclusions

Soil parameters such as EC, temperature, moisture 
content, and bulk density with soil texture are suitable 
for soil quality assessment. EC and soil temperature 
are important parameters but they show positive 
autocorrelation. The factors affecting EC and temperature 
(moisture content, bulk density, land use, and soil texture) 
may be analyzed by means of ANNs. The most useful 
factors in modeling EC were soil temperature and soil 
texture, and for modeling soil temperature the most 
important parameters were soil moisture content and bulk 
density. The MLP neural network model for both EC and 
temperature showed that land use variable was heavily 
burdened with error when used for forecasting these 
parameters. However, the evaluation of land use effects 
on the changes in the investigated soil properties revealed 
that EC was the only variable unaffected by land use. 
This was due to the very small reach of natural sources of 
salinity. Multivariate analysis indicted differences between 
the types of land use. Arable lands were most seriously 
affected by the share of clay, and the most important factor 
in forests was bulk density. Further studies focusing on 

variability of specific soil properties should be carried 
out to confirm agricultural productivity of these soils, 
and to improve their qualities that are important for 
agricultural productivity and ecosystem services (e.g., C 
sequestration).
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